Space Physics Researches at SINP M.I. Panasyuk Skobeltsyn Institute of Nuclear Physics, MSU ### The main activities in space physics: - Space radiation detectors and other instrumentation to be used in space; - Development of empirical models of radiation in space; radiation environment monitoring; - Development of large-scale magnetospheric models; - Scientific data on Sun/Earth interaction management. ### SINP MSU: Experiments in Space Molniya 3K #### **Measurements of:** - hot plasma, - medium and high energy electrons, protons & doses. ### SINP/MSU experiments on ISS SINP/MSU experiments on International Space Station. Dosimetry: R-16, SRC, Scorpion ### Radiation environment monitoring - The cosmic ray anomalous component particles trapping in the Earth's magnetosphere - The impact of space radiation and other space environment factors on spacecraft systems and materials - Development of empirical models of radiation in space ISO/DIS No 15390 "Space environment (natural and artificial). Model of radiation impact by galactic cosmic rays" # The Radiation Monitoring Systemof the Russian Segment of the ISS.Current Status and Results. - 1) S.P.Korolev Rocket and Space Corporation «Energia» - 2) Skobeltsyn Institute of Nuclear Physics of Moscow State University - State Research Centre RF Institute for Biomedical Problems, Russian Academy of Sciences # Current configuration of the radiation monitoring system (RMS) # R-16 dosimeter ### **DB-8 unit** # The R-16 device has been operating on the ISS since summer, 2000. Four DB-8 sets, Utility Unit and Data Collection Unit, were delivered to the ISS by "Progress M 1-6" on May 23, 2001. On the 27th of July, 2001 the crew of the 2nd ISS mission mounted the blocks on board of the Service Module and connected up the cables. The RMS has been operating since August 1, 2001 12:42 UT. # The Russian segment of the ISS ## Placements of the RMS blocks | Block | Placement | |---------|-------------------------| | DB-8 №1 | Starboard side, | | | behind board № 410 | | DB-8 №2 | Port side, behind | | | board № 244 (cabin) | | DB-8 №3 | Starboard side, behind | | | board № 447 (cabin) | | DB-8 №4 | Starboard side, | | | behind board № 435 | | R-16 | Ceiling of Big diameter | | | bay, behind | | | board № 327 | | UU | Starboard side, behind | | | board № 447 (cabin) | | DCU | starboard side, behind | | | board № 447 (cabin) | # Daily doses measured with unshielded detectors of the first and fourth DB-8 units since January 1 till December 31, 2003 # CORONAS-F satellite - was launched on July 30th, 2001 - circular orbit with altitude ~ 500 km - inclination ~83° - scientific information available from August 14th, 2001 to present. # MONITORING of COSMIC RAYS We present here data obtained by two detector types in the following energy ranges — #### 1.) semiconductor telescope - electrons 300 600 keV - electrons 1.5 3 MeV - electrons 3 6 MeV - protons 1 5 MeV - 2.) scintillator - protons 14-26 MeV #### Electrons 1.5-3 MeV, night local time (L= 1.3, 1.6, 2.2, 3.5, 5.5) # Radiation Measurements onboard Geostationary Satellites #### **Monitoring Service Aims** - 1. Estimation of Space Environment Radiation Impact on Satellites; - 2. Examination of Existing Models and Creation New Models of Radiation Fields; - 3. Collection of Experimental Date to Solve the Problems of the Earht's Magnetosphere Physics ### **DIERA** **Electrostatic Analyzer** #### **Detectors and Measured Parameters** | | Detector Types | Energy Range | | |--|-----------------------|--------------------------------|--| | Electrostatic analyzer | | Ee=1 keV | | | Windowed Geiger counter | | Ee>40 keV Ei>1 MeV | | | Semiconductor Telescop | | Ee=0.1-1.5 MeV
Ei=12-50 keV | | | Scintillator and Semiconductor
Telescop | | Ee=2-6 MeV
Ei=10-300 MeV | | | Cherenkov detector | | Ee>5 MeV
Ei>500 MeV/nucl. | | | Dosimeter | | Ee>4MeV Ei>50 MeV | | | Satellite Experiments | | | | | | | |-----------------------|------|--|-------------|----------------------------|--|--| | Satellite | | Orbit | Time | Solar Cycle | | | | Gorizont-34 | | Geostationary, H=36 600 km | 1991 – 1992 | Decrease 22 SC | | | | Gorizont-35 | | Geostationary, H=36 600 km | 1991 – 1994 | Decrease 22 SC | | | | Gorizont-41 | | Geostationary, H=36 600 km | 1993 – 1994 | Decrease 2 2 SC | | | | Glonass | s-60 | Circular, H=20 000 km, i=65° | 1994 – 1996 | Decrease and minimum 22 SC | | | | Electro | | Geostationary, H=36 600 km | 1995 - 1998 | Minimum and increase 23 SC | | | | Express | s-11 | Geostationary H=36 600 km | 1995 - 1996 | Minimum 23 SC | | | | Express | s-A2 | Geostationary, H=36 600 km | 2000 – p.t. | Maximum and decrease 23 SC | | | | Express | s-A3 | Geostationary, H=36 600 km | 2000 – p.t. | Maximum and decrease 23 SC | | | | Molniya | a-3K | Elliptical, i=62°
Ha=40 000 km Hp=500 km, | 2001 – p.t. | Maximum and decrease 23 SC | | | • • • • • • • #### Satellite Orbits: - 1. COSMOS - 2. GLONASS - 3. MOLNIYA - 4. GORIZONT EXPRESS Solar Cycles Radiation Situation on Geosynchronous Orbit in 2001 Electron Flux Dynamics on Geosynchronous Orbit